Enter a problem...
Linear Algebra Examples
x+3y=10x+3y=10 , 3x+9y=163x+9y=16
Step 1
Find the AX=BAX=B from the system of equations.
[1339]⋅[xy]=[1016][1339]⋅[xy]=[1016]
Step 2
The inverse of a 2×22×2 matrix can be found using the formula 1|A|[d-b-ca]1|A|[d−b−ca] where |A||A| is the determinant of AA.
If A=[abcd]A=[abcd] then A-1=1|A|[d-b-ca]A−1=1|A|[d−b−ca]
Find the determinant of [1339][1339].
These are both valid notations for the determinant of a matrix.
determinant[1339]=|1339|determinant[1339]=∣∣∣1339∣∣∣
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
(1)(9)-3⋅3(1)(9)−3⋅3
Simplify the determinant.
Simplify each term.
Multiply 99 by 11.
9-3⋅39−3⋅3
Multiply -3−3 by 33.
9-99−9
9-99−9
Subtract 99 from 99.
00
00
00
Substitute the known values into the formula for the inverse of a matrix.
10[9-(3)-(3)1]10[9−(3)−(3)1]
Simplify each element in the matrix.
Rearrange -(3)−(3).
10[9-3-(3)1]10[9−3−(3)1]
Rearrange -(3)−(3).
10[9-3-31]10[9−3−31]
10[9-3-31]
Multiply 10 by each element of the matrix.
[10⋅910⋅-310⋅-310⋅1]
Rearrange 10⋅9.
[Undefined10⋅-310⋅-310⋅1]
Since the matrix is undefined, it cannot be solved.
Undefined
Undefined